Chapter 31: Images/Optical Instruments Tuesday November $22^{\text {nd }}$

- V. IMPORTANT: Final exam will be in HCB103/316
- HCB316, last names A to J; HCB103, last names K to Z
- Mini-exam 6 next Thu. (Chs. 30/31, LONCAPA 21-23)
- Check your exam scores online
- Still 46 unregistered iClickers, some with excellent scores!
-Images, mirrors and lenses (Ch. 31)
- Plane mirrors
- Curved mirrors (convex and concave mirrors)
- Ray tracing with curved mirrors
-The mirror equation
-Images and ray tracing with lenses
-The lens equation
Reading: up to page 552 in the text book (Ch. 31)

Images with Mirrors

$S=S^{\prime}$
Image is upright

Dashed lines show apparent light paths.

Solid lines show actual light paths.

Images with Curved Mirrors

This is a parabolic mirror

Ray Tracing with Mirrors

1. Any ray parallel to the mirror axis reflects through the focal point F.
$F=$ focal point
F
$C=$ center of curvature ($=2 f$ for spherical mirror)

Ray Tracing with Mirrors

2. Conversely, any ray that passes through F reflects parallel to the axis.
$F=$ focal point
$C=$ center of curvature ($=2 f$ for spherical mirror)

Ray Tracing with Mirrors

3. Any ray that strikes the center of the mirror reflects symmetrically about the axis.

Ray Tracing with Concave Mirrors

- Image is real, inverted and reduced
- Real implies that light really comes from the image

Ray Tracing with Concave Mirrors

- Image is real, inverted and enlarged
- Real implies that light really comes from the image

Ray Tracing with Concave Mirrors

- Image is virtual, upright and enlarged
- Virtual implies no light actually came from image

Ray Tracing with Convex Mirrors

- Image is always virtual, upright and reduced
- Virtual implies no light actually came from image

Ray Tracing with Concave Mirrors

$C=2 f$ for spherical mirror

Magnification:
$M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}$
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \left\lvert\, \begin{aligned} & \text { Mirror } \\ & \text { equation }\end{aligned}\right.$

Ray Tracing with Concave Mirrors

Magnification:

Ray Tracing with Convex Mirrors

Focal length, f, for concave mirror is negative ($f<0$)

Magnification:
$M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}$
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$ Mirror

Summary for curved mirrors

Table 31.1 Image Formation with Mirrors: Sign Conventions

Images with Lenses

Images with Lenses

Ray Tracing with Lenses

1. Any ray parallel to the lens axis refracts and then passes through the focal point F on the other side.

$F=$ focal point; one each side (equidistant from lens)

Ray Tracing with Lenses

2. Conversely, any ray that passes through the focal point F will emerge from the lens parallel to its axis.

$F=$ focal point; one each side (equidistant from lens)

Ray Tracing with Lenses

3. Any ray that passes through the center of the lens will not be deflected.

$F=$ focal point; one each side (equidistant from lens)

Ray Tracing with Convex Lenses

Real image other side of lens $\left(f>0, s^{\prime}>0\right)$

Magnification:

$$
M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}
$$

Lens equation:

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

Ray Tracing with Convex Lenses

Virtual image same side of lens $\left(f>0, s^{\prime}<0\right)$

Magnification:
$M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}$

Lens equation:

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

Ray Tracing with Concave Lenses

Virtual image same side of lens $\left(f<0, s^{\prime}<0\right)$

Magnification:
$M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}$

Lens equation:

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

Summary for Lenses

Table 31.2 Image Formation with Lenses: Sign Conventions

Focal Length, f	Object Distance, s	Image Distance, \mathbf{s}^{\prime}	Type of Image	Ray Diagram
$+$ (convex)	$\begin{gathered} + \\ s>2 f \end{gathered}$	$+$ (opposite side of lens) $2 f>s^{\prime}>f$	Real, inverted, reduced	
$+$ (convex)	$\begin{gathered} + \\ 2 f>s>f \end{gathered}$	(opposite side of lens) $s^{\prime}>2 f$	Real, inverted, enlarged	
$+$ (convex)	$\begin{gathered} + \\ s<f \end{gathered}$	(same side of lens)	Virtual, upright, enlarged	
(concave)	$+$	(same side of lens)	Virtual, upright, reduced	

Example Problems: Which Optical Element?

Example Problems: Which Optical Element?

Example Problems: Which Optical Element?

