#### Chapter 31: Images/Optical Instruments Tuesday November 22<sup>nd</sup>

- V. IMPORTANT: Final exam will be in HCB103/316
  - HCB316, last names A to J; HCB103, last names K to Z
- Mini-exam 6 next Thu. (Chs. 30/31, LONCAPA 21-23)
- Check your exam scores online
- Still 46 unregistered *i*Clickers, some with excellent scores!

•Images, mirrors and lenses (Ch. 31)

- •Plane mirrors
- •Curved mirrors (convex and concave mirrors)
- Ray tracing with curved mirrors
- •The mirror equation
- Images and ray tracing with lenses

 $\cdot$ The lens equation

Reading: up to page 552 in the text book (Ch. 31)



#### **Images with Curved Mirrors**



# Ray Tracing with Mirrors

1. Any ray parallel to the mirror axis reflects through the focal point F.



# Ray Tracing with Mirrors

2. Conversely, any ray that passes through *F* reflects parallel to the axis.



# **Ray Tracing with Mirrors**

3. Any ray that strikes the center of the mirror reflects symmetrically about the axis.



C

#### Ray Tracing with Concave Mirrors



• Real implies that light really comes from the image



- Image is <u>real</u>, <u>inverted</u> and <u>enlarged</u>
- Real implies that light really comes from the image



- Image is virtual, upright and enlarged
- Virtual implies no light actually came from image



• Virtual implies no light actually came from image

#### Ray Tracing with Concave Mirrors





#### Ray Tracing with Convex Mirrors



## Summary for curved mirrors

Table 31.1 Image Formation with Mirrors: Sign Conventions

| Focal Length <i>, f</i> | <b>Object Distance</b> , s              | Image Distance, s'                   | Type of Image                    | Ray Diagram |
|-------------------------|-----------------------------------------|--------------------------------------|----------------------------------|-------------|
| +<br>(concave)          | +<br>(in front of mirror)<br>s > 2f     | +<br>(in front of mirror)<br>s' < 2f | Real,<br>inverted,<br>reduced    |             |
| +<br>(concave)          | +<br>(in front of mirror)<br>2f > s > f | +<br>(in front of mirror)<br>s' > 2f | Real,<br>inverted,<br>enlarged   |             |
| +<br>(concave)          | +<br>(in front of mirror)<br>s < f      | –<br>(behind mirror)                 | Virtual,<br>upright,<br>enlarged | C F O       |
| –<br>(convex)           | +<br>(in front of mirror)               | (behind mirror)                      | Virtual,<br>upright,<br>reduced  |             |



#### Images with Lenses



## Ray Tracing with Lenses

1. Any ray parallel to the lens axis refracts and then passes through the focal point *F* on the other side.



#### F = focal point; one each side (equidistant from lens)

## Ray Tracing with Lenses

2. Conversely, any ray that passes through the focal point *F* will emerge from the lens parallel to its axis.



F = focal point; one each side (equidistant from lens)

## Ray Tracing with Lenses

3. Any ray that passes through the center of the lens will not be deflected.



F = focal point; one each side (equidistant from lens)



#### **Ray Tracing with Convex Lenses** Virtual image same side of lens (f > 0, s' < 0)





Lens equation:

s'2

## **Ray Tracing with Concave Lenses** Virtual image same side of lens (f < 0, s' < 0)



# Summary for Lenses Table 31.2 Image Formation with Lenses: Sign Conventions

| Focal Length <i>, f</i> | Object Distance, s | Image Distance, s'                          | Type of Image                    | Ray Diagram                                            |
|-------------------------|--------------------|---------------------------------------------|----------------------------------|--------------------------------------------------------|
| +<br>(convex)           | +<br>s > 2f        | +<br>(opposite side of lens)<br>2f > s' > f | Real,<br>inverted,<br>reduced    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| +<br>(convex)           | + 2f > s > f       | +<br>(opposite side of lens)<br>s' > 2f     | Real,<br>inverted,<br>enlarged   | 2f > s > f $f$ $I$ $2f$                                |
| +<br>(convex)           | +<br>s < f         | –<br>(same side of lens)                    | Virtual,<br>upright,<br>enlarged | S < f $f = f$ $f = f$                                  |
| (concave)               | +                  | – (same side of lens)                       | Virtual,<br>upright,<br>reduced  | F F                                                    |

#### **Example Problems: Which Optical Element?**



#### **Example Problems: Which Optical Element?**



#### **Example Problems: Which Optical Element?**